

MATHEMATICS STANDARD LEVEL PAPER 1

Monday 5 November 2007 (afternoon)

1 hour 30 minutes

O 1: 1		1
Candidate	session	number

0	0								
---	---	--	--	--	--	--	--	--	--

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Answer all the questions in the spaces provided.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working. Working may be continued below the lines, if necessary.

1. [Maximum mark: 6]

The histogram below represents the ages of 270 people in a village.

_1	00											
	80	_				\vdash						
Frequency	60	_										
Frequ	40											
	20											
	0		2	0	1	0	6	0	Q	0	10)()
					Ag	e in			0	U	10	

(a) Use the histogram to complete the table below.

[2 marks]

Age range	Frequency	Mid-interval value
0 ≤ age < 20	40	10
$20 \le age < 40$		
40 ≤ age < 60		
60 ≤ age < 80		
80 ≤ age ≤ 100		

(b)	Hence, calculate an estimate of the mean age.	[4 marks]

The Venn diagram below shows information about 120 students in a school. Of these, 40 study Chinese (C), 35 study Japanese (J), and 30 study Spanish (S).

A student is chosen at random from the group. Find the probability that the student

(a)	studies exactly two of these languages;	[I mark]
(b)	studies only Japanese;	[2 marks]
(c)	does not study any of these languages.	[3 marks]

A bag contains four apples (A) and six bananas (B). A fruit is taken from the bag and eaten. Then a second fruit is taken and eaten.

(a) Complete the tree diagram below by writing probabilities in the spaces provided.

[3 marks]

(b)	F	ir	10	l t	h	e	p	r	ol	ba	ał	oi	li	it	y	t	h	a	t	0	n	e	(of	f (ea	a	cł	1	t:	y]	p	e	C	f	ì	fr	u	it	,	N	a	S	e	a	te	en	l.										L	[3	7	n	ai	rŀ	ks]	
																																															-		 																	
																																																	 	 •																

The following diagram shows part of the graph of $y = \cos x$ for $0 \le x \le 2\pi$. Regions A and B are shaded.

(a) Write down an expression for the area of A.

[1 mark]

(b) Calculate the area of A.

[1 mark]

(c) Find the total area of the shaded regions.

[4 marks]

 	•	 •	 •	•	 •	•	 •	•	•	 ٠	•	 •	•	•	 •	•	 	•	•	 •	•	 •	•	 •	•	 	٠	•	 	•	•	 •	•	 •
																																		•
																																		•
																																 •	•	 •
																																 ٠	•	 •
 		 ٠				•	 ٠	•		 •	٠		٠		 •	٠	 	٠	٠	 •	٠		•	 •	٠		٠	•	 	٠	•		•	
 	•		 •	•				•		 ٠	•		٠	•		•	 	•	•	 •	•	 •	•	 •	•	 •	•	•	 	•	•	 •	•	 · •
 							 •				•	 •	٠			•	 	٠	٠	 •					٠		٠		 				•	 · -
 	•										•					•	 					 •		 •	•	 •		•	 				•	 · •
 																	 												 					 · -
 															 ٠		 				•					 			 					

5.	[Ma	ximum	n mark: 6]	
	The	first fo	our terms of a sequence are 18, 54, 162, 486.	
	(a)	Use	all four terms to show that this is a geometric sequence.	[2 marks]
	(b)	(i)	Find an expression for the n^{th} term of this geometric sequence.	
		(ii)	If the n^{th} term of the sequence is 1062882, find the value of n .	[4 marks]

	ГМахітит	1	/
6	I Marimiim	mark.	h
v.	IIVIUAIIIUIII	mun.	() (

(a)	Write down the first three terms of the sequence $u_n = 3n$, for $n \ge 1$.	[1 mark]
-----	---	----------

(b) Find

(i)
$$\sum_{n=1}^{20} 3n$$
;

	100	
(ii)	$\sum_{n=0}^{100} 3n$.	[5 marks]
	n=21	

Let $f(x) = \log_a x$, x > 0.

- (a) Write down the value of
 - (i) f(a);
 - (ii) f(1);

(iii)	$f(a^4)$.	[3 marks]

		٠	•	•	•	•		٠	•	•	•	•	•		 •	•	•	•	•	•		•	•	 ٠	٠	-	 •	•	•	 ٠	•	 •	•	•	•	 •	•	 •	•	•	٠	
															 											-																
															 																				•							

(b) The diagram below shows part of the graph of f.

On the same diagram, sketch the graph of f^{-1} .

[3 marks]

8.	[Maximum	mark:	61

Consider the function $f(x) = 4x^3 + 2x$. Find the equation of the normal to the conformal of $f(x) = 4x^3 + 2x$.	ırve

Differentiate each of the following with respect to x.

(a) $y = \sin 3x$ [1 mark]

(b) $y = x \tan x$ [2 marks]

(c) $y = \frac{\ln x}{x}$ [3 marks]

.....

.....

.....

The diagram below shows the graph of $f(x) = 1 + \tan\left(\frac{x}{2}\right)$ for $-360^{\circ} \le x \le 360^{\circ}$.

(a) On the same diagram, draw the asymptotes.

[2 marks]

- (b) Write down
 - (i) the period of the function;
 - (ii) the value of $f(90^{\circ})$.

[2 marks]

(c) Solve f(x) = 0 for $-360^{\circ} \le x \le 360^{\circ}$.

[2 marks]

-12-

11. [Maximum mark: 6]

The following diagram shows part of the graph of $f(x) = 5 - x^2$ with vertex V(0, 5). Its image y = g(x) after a translation with vector $\begin{pmatrix} h \\ k \end{pmatrix}$ has vertex T(3, 6).

- (a) Write down the value of
 - (i) h;
 - (ii) k. [2 marks]
- (b) Write down an expression for g(x). [2 marks]
- (c) On the same diagram, sketch the graph of y = g(-x). [2 marks]

.....

[Maximum mark: 6] **12.**

A discrete random variable X has a probability distribution as shown in the table below.

х	0	1	2	3
P(X = x)	0.1	а	0.3	b

(a) Find the value of $a + a$	b.
-------------------------------	----

[2 marks]

	(h)	Given that	E(X)	1 = 1.5	find the	e value	of a	and o	of B	h
- 1	v.	OIVOII UIUU.	∟ (∠	, — ı	, iiiid tiit	, varac	$o_1 u$	ullu	o_{1}	_

[4 marks]

(a)	Expand	$\left(e + \frac{1}{e}\right)$	in terms of e.	[4 marks]
	,			

(b)	Express $\left(e + \frac{1}{e}\right)^4 + \left(e - \frac{1}{e}\right)^6$	as the sum of three terms.	[2 marks]
-----	---	----------------------------	-----------

The area $A \text{ km}^2$ affected by a forest fire at time t hours is given by $A = A_0 e^{kt}$. When t = 5, the area affected is 1 km^2 and the rate of change of the area is $0.2 \text{ km}^2 \text{ h}^{-1}$.

(a)	Show that $k = 0.2$.	[4 marks]

(b)	Given that $A_0 = \frac{1}{e}$, find the value of t when 100 km ² are affected.	[2 marks]
-----	---	-----------

On the axes below, sketch a curve y = f(x) which satisfies the following conditions.

X	f(x)	f'(x)	f''(x)
$-2 \le x < 0$		negative	positive
0	-1	0	positive
0 < x < 1		positive	positive
1	2	positive	0
1 < x ≤ 2		positive	negative

